


PRACTICAL APPLICATIONS

Some of the real-life applications covered in this book are listed in order of appearance.

	 • Applications of electrostatics (Section 4.1)
 • Electrostatic separation of solids (Example 4.3)
 • Electrostatic discharge (ESD) (Section 4.11)
 • Electrostatic shielding (Section 5.9B)
 • High dielectric constant materials (Section 5.10)
 • Graphene (Section 5.11) NEW
 • Electrohydrodynamic pump (Example 6.1)
 • Xerographic copying machine (Example 6.2)
 • Parallel-plate capacitor, coaxial capacitor, and spherical capacitor (Section 6.5)
 • RF MEMS (Section 6.8) (Chapter 12 opener) NEW
 • Ink-jet printer (Problem 6.52)
 • Microstrip lines (Sections 6.7, 11.8, and 14.6)
 • Applications of magnetostatics (Section 7.1)
 • Coaxial transmission line (Section 7.4C)
 • Lightning (Section 7.9)
 • Polywells (Section 7.10) NEW
 • Magnetic resonant imaging (MRI) (Chapter 8 opener)
 • Magnetic focusing of a beam of electrons (Example 8.2, Figure 8.2)
 • Velocity filter for charged particles (Example 8.3, Figure 8.3)
 • Inductance of common elements (Table 8.3)
 • Electromagnet (Example 8.16)
 • Magnetic levitation (Section 8.12)
 • Hall effect (Section 8.13) NEW
 • Direct current machine (Section 9.3B)
 • Memristor (Section 9.8) NEW
 • Optical nanocircuits (Section 9.9) NEW
 • Homopolar generator disk (Problem 9.14)
 • Microwaves (Section 10.11)
 • Radar (Sections 10.11 and 13.9)
 • 60 GHz technology (Section 10.12) NEW
 • Bioelectromagnetics (Chapter 11 opener)
 • Coaxial, two-line, and planar lines (Figure 11.1, Section 11.2)
 • Quarter-wave transformer (Section 11.6A)
 • Data cables (Section 11.8B)
 • Metamaterials (Section 11.9) NEW
 • Microwave imaging (Section 11.10) NEW
 • Optical fiber (Section 12.9)
 • Cloaking and invisibility (Section 12.10) NEW
 • Smart antenna (Chapter 13 opener)
 • Typical antennas (Section 13.1, Figure 13.2)
 • Electromagnetic interference and compatibility (Section 13.10)
 • Grounding and filtering (Section 13.10)
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 • Textile antennas and sensors (Section 13.11) NEW
 • RFID (Section 13.12) NEW
 • Commercial EM software—FEKO (Section 14.7) NEW
 • COMSOL Multiphysics (Section 14.8) NEW
 • CST Microwave Studio (Section 14.9) NEW

   Approximate 

  Best Experimental Value for Problem 

Quantity (Units) Symbol Value* Work

Permittivity of free space (F/m) eo 8.854  1012 
1029

36p

Permeability of free space (H/m) mo 4p  107 12.6  107

Intrinsic impedance of free space (V) ho 376.6 120p

Speed of light in vacuum (m/s) c 2.998  108 3  108

Electron charge (C) e 1.6022  1019 1.6  1019

Electron mass (kg) me 9.1093  1031 9.1  1031

Proton mass (kg) mp 1.6726  1027 1.67  1027

Neutron mass (kg) mn 1.6749  1027 1.67  1027

Boltzmann constant (J/K) k 1.38065  1023 1.38  1023

Avogadro number (/kg-mole) N 6.0221  1023 6  1023

Planck constant (J  s) h 6.626  1034 6.62  1034

Acceleration due to gravity (m/s2) g 9.80665 9.8
Universal constant of gravitation G 6.673  1011 6.66  1011

N (m/kg)2

Electron-volt (J) eV 1.602176  1019 1.6  1019

  *  Values recommended by CODATA (Committee on Data for Science and Technology, Paris).

PHYSICAL CONSTANTS
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xiii

This new edition is intended to provide an introduction to engineering electromagnetics 
(EM) at the junior or senior level. Although the new edition improves on the previous edi-
tions, the core of the subject of EM has not changed. The fundamental objective of the first 
edition has been retained: to present EM concepts in a clearer and more interesting manner 
than other texts. This objective is achieved in the following ways:

1. To avoid complicating matters by covering EM and mathematical concepts simultane-
ously, vector analysis is covered at the beginning of the text and applied gradually. This approach 
avoids breaking in repeatedly with more background on vector analysis, thereby creating 
discontinuity in the flow of thought. It also separates mathematical theorems from physical 
concepts and makes it easier for the student to grasp the generality of those theorems. Vector 
analysis is the backbone of the mathematical formulation of EM problems.

2. Each chapter opens either with a historical profile of some electromagnetic pioneers 
or with a discussion of a modern topic related to the chapter. The chapter starts with a brief 
introduction that serves as a guide to the whole chapter and also links the chapter to the rest 
of the book. The introduction helps the students see the need for the chapter and how it 
relates to the previous chapter. Key points are emphasized to draw the reader’s attention. A 
brief summary of the major concepts is discussed toward the end of the chapter.

3. To ensure that students clearly get the gist of the matter, key terms are defined and 
highlighted. Important formulas are boxed to help students identify essential formulas.

4. Each chapter includes a reasonable amount of solved examples. Since the examples 
are part of the text, they are clearly explained without asking the reader to fill in missing 
steps. In writing out the solution, we aim for clarity rather than efficiency. Thoroughly 
worked out examples give students confidence to solve problems themselves and to learn to 
apply concepts, which is an integral part of engineering education. Each illustrative example 
is followed by a problem in the form of a Practice Exercise, with the answer provided.

5. At the end of each chapter are ten review questions in the form of multiple-choice 
 objective items. Open-ended questions, although they are intended to be thought-provoking, 
are ignored by most students. Objective review questions with answers immediately following 
them provide encouragement for students to do the problems and gain immediate feedback.  
A large number of problems are provided and are presented in the same order as the material 
in the main text. Approximately 20 to 25 percent of the problems in this edition have been  
replaced. Problems of intermediate difficulty are identified by a single asterisk; the most diffi-
cult problems are marked with a double asterisk. Enough problems are provided to allow the 
instructor to choose some as examples and assign some as homework problems. Answers to 
odd-numbered problems are provided in Appendix E.

6. Since most practical applications involve time-varying fields, six chapters are 
devoted to such fields. However, static fields are given proper emphasis because they 
are special cases of dynamic fields. Ignorance of electrostatics is no longer acceptable 

PREFACE
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because there are large industries, such as copier and computer peripheral manufactur-
ing, that rely on a clear understanding of electrostatics.

7. The last section in each chapter is devoted to applications of the concepts covered in 
the chapter. This helps students see how concepts apply to real-life situations.

8. The last chapter covers numerical methods with practical applications and  
MATLAB programs. This chapter is of paramount importance because most practical prob-
lems are only solvable using numerical techniques. Since MATLAB is used throughout the 
book, an introduction to MATLAB is provided in Appendix C.

9. Over 130 illustrative examples and 300 figures are given in the text. Some additional 
learning aids such as basic mathematical formulas and identities are included in Appendix A. 
Another guide is a special note to students, which follows this preface.

NEW TO THE SIXTH EDITION
 •  Five new Application Notes designed to explain the real-world connections  

between the concepts discussed in the text.
 •  A revised Math Assessment test, for instructors to gauge their students’  

mathematical knowledge and preparedness for the course.
 •  New and updated end-of-chapter problems.

Solutions to the end-of-chapter problems and the Math Assessment, as well as 
PowerPoint slides of all figures in the text, can be found at the Oxford University Press 
Ancillary Resource Center. 

Students and professors can view Application Notes from previous editions of the text 
on the book’s companion website www.oup.com/us/sadiku.

Although this book is intended to be self-explanatory and useful for self-instruction, 
the personal contact that is always needed in teaching is not forgotten. The actual choice 
of course topics, as well as emphasis, depends on the preference of the individual instruc-
tor. For example, an instructor who feels that too much space is devoted to vector anal-
ysis or static fields may skip some of the materials; however, the students may use them 
as reference. Also, having covered Chapters 1 to 3, it is possible to explore Chapters 9 to 
14. Instructors who disagree with the vector-calculus-first approach may proceed with 
Chapters 1 and 2, then skip to Chapter 4, and refer to Chapter 3 as needed. Enough mate-
rial is covered for two-semester courses. If the text is to be covered in one semester, cover-
ing Chapters 1 to 9 is recommended; some sections may be skipped, explained briefly, or 
assigned as homework. Sections marked with the dagger sign ( † ) may be in this category.

ACKNOWLEDGMENTS
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Colleen Rowe, Production Editor Claudia Dukeshire, and Designer Michele Laseau at 
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xvi PREFACE
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A NOTE TO THE STUDENT

Electromagnetic theory is generally regarded by students as one of the most difficult cours-
es in physics or the electrical engineering curriculum. But this conception may be proved 
wrong if you take some precautions. From experience, the following ideas are provided to 
help you perform to the best of your ability with the aid of this textbook:

1. Pay particular attention to Part 1 on vector analysis, the mathematical tool for this 
course. Without a clear understanding of this section, you may have problems with the rest 
of the book.

2. Do not attempt to memorize too many formulas. Memorize only the basic ones, 
which are usually boxed, and try to derive others from these. Try to understand how formu-
las are related. There is nothing like a general formula for solving all problems. Each for-
mula has limitations owing to the assumptions made in obtaining it. Be aware of those as-
sumptions and use the formula accordingly.

3. Try to identify the key words or terms in a given definition or law. Knowing the 
meaning of these key words is essential for proper application of the definition or law.

4. Attempt to solve as many problems as you can. Practice is the best way to gain skill. 
The best way to understand the formulas and assimilate the material is by solving problems. 
It is recommended that you solve at least the problems in the Practice Exercise immediately 
following each illustrative example. Sketch a diagram illustrating the problem before 
 attempting to solve it mathematically. Sketching the diagram not only makes the problem 
easier to solve, but also helps you understand the problem by simplifying and organizing 
your thinking process. Note that unless otherwise stated, all distances are in meters. For 
example (2, 1, 5) actually means (2 m, 1 m, 5 m).

You may use MATLAB to do number crunching and plotting. A brief introduction to 
MATLAB is provided in Appendix C.

A list of the powers of 10 and Greek letters commonly used throughout this text is 
provided in the tables located on the inside cover. Important formulas in calculus, vectors, 
and complex analysis are provided in Appendix A. Answers to odd-numbered problems are 
in Appendix E.

xvii xvii
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MA-1

MATH ASSESSMENT

1.1  Let u be the angle between the vectors A and B. What can be said about u if  
(i) |A +B| , |A  B|, (ii) |A 1 B| 5 |A  B|, (iii) |A 1 B| . |A  B|?

1.2  Two sides of a parallelogram ABCD denoted as p = 5ax and q = 3ax + 4ay are shown 
in Figure MA-1 Let the diagonals intersect at O and make an angle a. Find the 
coordinates of O and the magnitude of a. Based on the value of a, what can we call 
ABCD?

B

O
α

A p = 5ax

CD

q = 3ax + 4ay

FIGURE MA-1 Parallelogram ABCD.

1.3  What is the distance R between the two points A(3, 5, 1) and B(5, 7, 2)? Also find 

its reciprocal, 
1
R

.

1.4  What is the distance vector RAB from A(3, 7, 1) to B(8, 19, 2) and a unit vector aAB 
in the direction of RAB?

1.5  Find the interval of values x takes so that a unit vector u satisfies |(x  2)u| , |3u|.
1.6  There are four charges in space at four points A, B, C, and D, each 1 m from every 

other. You are asked to make a selection of coordinates for these charges. How do 
you place them in space and select their coordinates? There is no unique way.

1.7  A man driving a car starts at point O, drives in the following pattern
15 km northeast to point A,
20 km southwest to point B,
25 km north to C,
10 km southeast to D,
15 km west to E, and stops.

How far is he from his starting point, and in what direction?
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1.8  A unit vector an makes angles a, , and  with the x-, y-, and z-axes, respectively. 
Express an in the rectangular coordinate system. Also express a nonunit vector OP

>
 

of length  parallel to an.
1.9  Three vectors p, q, and r sum to a zero vector and have the magnitude of 10, 11, 

and 15, respectively. Determine the value of p ? q 1 q ? r 1 r ? p.

1.10  An experiment revealed that the point Q(x, y, z) is 4 m from P(2, 1, 4) and that the 
vector QP

>
 makes 45.5225, 59.4003, and 60 with the x-, y-, and z-axes, respectively. 

Determine the location of Q.

1.11  In a certain frame of reference with x-, y-, and z-axes, imagine the first octant to be 
a room with a door. Suppose that the height of the door is h and its width is r. 
The top-right corner P of the door when it is shut has the rectangular coordinates 
(r, 0, h). Now if the door is turned by angle f, so we can enter the room, what are 
the coordinates of P? What is the length of its diagonal r 5 OP in terms of r and z? 
Suppose the vector OP

>
 makes an angle u with the z-axis; express r and h in terms 

of r and u.

1.12  Consider two vectors p 5 OP
>
 and q=OQ

>
 in Figure MA-2. Express the vector GR

>
 

in terms of p and q. Assume that /ORQ 5 90°.

MA-2 MATH ASSESSMENT

PR

Q

O

FIGURE MA-2 Orthogonal projection of one vector 
over another.

1.13  Consider the equations of two planes:

3x  2y  z 5 8
2x 1 y 1 4z 5 3

Let them intersect along the straight line . Obtain the coordinates of the points 
where  meets the xy– and the yz–planes. Also determine the angle between  and 
the xz-plane.

1.14  Given two vectors p 5 ax 1 ay and q 5 ay 1 az of equal length, find a third vector r such 
that it has the same length and the angle between any two of them is 60.

1.15  Given A 5 2xy ax 1 3zy ay 1 5z az and B 5 sin x ax 1 2y ay 1 5y az, find (i)  ? A, 
(ii)  3 A, (iii)  ?  3 A, and (iv)  ? (A 3 B).
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2.1  A triangular plate of base b 5 5 and height h 5 4 shown in Figure MA-3 is uni-
formly charged with a uniform surface charge density rs 5 10 C/m2. You are to cut 
a rectangular piece so that maximum amount of charge is taken out. What should 
be the dimensions x and y of the rectangle? What is the magnitude of the charge 
extracted out?

2.2  Consider two fixed points F1(c, 0) and F2(c, 0) in the xy-plane. Show that the 
locus of a point P(x, y) that satisfies the constraint that the sum PF1 +PF2 remains 
constant and is equal to 2a is an ellipse. The equipotential loci due to a uniform 
line charge of length 2c are family of ellipses in the plane containing the charge. 
This problem helps in proving it.

2.3  Show that the ordinary angle subtended by a closed curve lying in a plane at a 
point P is 2 radians if P is enclosed by the curve and zero if not.

MATH ASSESSMENT MA-3

x

y

M

M ′

O Aθ

F

FIGURE MA-3 A rectangular piece cut out 
from a triangular plate.

2.4  Show that the solid angle subtended by a closed surface at a point P is 4 steradians 
if P is enclosed by the closed surface and zero if not.

2.5  The electrostatic potential V(r) is known to obey the equation V(r) = 2V (2r) with 
the boundary condition V(5) 5 3 volts. Determine V(15).

2.6  Evaluate the indefinite integrals (i) 3cosec u du and (ii) 3sec u du. Ignore the arbi-
trary constant.

2.7  A liquid drop is in the form of an ellipsoid 
x2

a2 1
y2

b2 1
z2

c2 5 1 shown in Figure MA-4 

and is filled with a charge of nonuniform density ry 5 x2  C/m3. Find the total 
charge in the drop.

2.8  Two families of curves are said to be orthogonal to each other if they intersect at 
90. Given a family y2 5 cx3, find the equation for orthogonal trajectories and plot 
three to four members of each on the same graph.

2.9  Consider a vector given by E 5 (4xy 1 z)ax 1 2x2ay 1 x az. Find the line integral 

from A(3, 7, 1) to B(8, 9, 2) by (i) evaluating the line integral VAB 5  3
B

A
E ? dl along 

    the line joining A to B and (ii) evaluating e23
C

A
E # dl 2 3

D

C
E # dl 2 3

B

D
E # dl f ,  

where the stopovers C and D are C(8, 7, 1) and D(8, 9, 1). 
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2.10  Find the trigonometric Fourier series of a function f(x) 5 x 1 x2 defined over the 
interval  , x ,  .

2.11  In a certain electrostatic system, there are found an infinite set of image point 
charges. The field intensity at a point may be written as

E 5 A a
`

m51 
a
`

n5m

(21)(n21)

n2

Simplify the double summation.
 Hint: Integrating the following series term by term and substituting x 5 1 helps in 
finding the result.

1
1 1 x

5 12x 1 x2 2 x3 1 . . . 1 2 . . .

2.12  Solve the differential equation

d2V(x)
dx2 5

k

"V(x)

subject to the boundary conditions 
dV
dx

`
x50

5 0 and V(0) 5 0. Assume that k is a 

constant.

3.1  The location of a moving charge is given by the time-varying radius vector r 5 2 
cos t ax 1 2 sin t ay + 3taz. Describe the trajectory of motion. Find the velocity and 
acceleration vectors at any instant t. In particular, indicate their directions at the 
specific instants t 5 0 and t 5 / 2. Find their magnitudes at any instant.

3.2  The magnetic field strength H(z) at a point on the z-axis shown in Figure MA-5 is 
proportional to the sum of cosine of angles and is given by H 5 k(cos u1 1 cos u2). 

Find H(0). Also show that if a ≪ ,, H (6,) <
1
2

H(0). This helps in finding the 

magnetic field along the axis of a long solenoid.

a x

–c

y

b

S

–a

τ

–b

c
z

FIGURE MA-4 A non uniformly charged  
liquid drop.

MA-4 MATH ASSESSMENT
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3.3  Suppose it is suggested that B 5 r (k 3 r) is the magnetic flux density vector, where 
k is a constant vector and r 5 rar verify if it is solenoidal.

MATH ASSESSMENT MA-5

3.4  Evaluate the line integral 
IC

(x 1 y)dx 1 (x 2 y)dy

x2
1 y2  where C is the circle x2 1 y2 5 

a2 of constant radius a.

3.5  Evaluate the line integral 
I  C

xdy 2 ydx
x2 1 y2  where C is a closed curve (i) encircling the 

origin n times, (ii) not enclosing the origin.

4.1  Show that  ?  3 A 5 0.
4.2  Show that  3  5 0.

4.3  Given that the imaginary unit is j 5 "21 and that x 5 j j, could the value of x be 
real? If so, is it unique? Can x have one value in the interval (100, 120)?

4.4  Show that  ? A 3 B 5 B ?  3 A  A ?  3 B.
4.5  Use De Moivre's theorem to prove that cos 3u 5 cos3 u  3 cos u sin2u:

4.6  Determine "j.

4.7  Determine "j using the Euler formula.
4.8  Find the phasors for the following field quantities:

  (a) Ex(z, t) 5 Eo cos (t  z 1 f) (V/m)
  (b) Ey(z, t) 5 100e3z cos (t  5z 1 /4) (V/m)
  (c) Hx(z, t) 5 Ho cos (t 1 z) (A/m)
  (d) Hy(z, t) 5 120e5z cos (t 1 z 1 fh) (A/m)

4.9  Find the instantaneous time domain sinusoidal functions corresponding to the 
following phasors:

  (a) Ex(z) 5 Eoe jz (V/m)
  (b) Ey(z) 5 100e3zej5z (V/m)
  (c) Is(z) 5 5 1 j4 (A)
  (d) Vs(z) 5 j10e j / 3 (V)

4.10  Write the phasor expression ~I for the following current using a cosine reference.
  (a) i(t) 5 Io cos (t   /6)

  (b) i(t) 5 Io sin (t 1  /3)

z
z

a 0

θ1 θ2

2

a

FIGURE MA-5 Toward finding magnetic field along the axis of a solenoid.
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4.11  In a certain resonant cavity, the resonant modes are described by a triplet of 
 nonnegative integers m, n, and p. Find possible solutions under the inequality 
 constraints,

mn 1 np 1 pm 2 0

13
16

#
m2

4
1

n2

9
1 p2 #

5
4

4.12  A voltage source V (t) 5 100 cos (6109t  45) (V) is connected to a series RLC 
circuit, as shown in Figure MA-6. Given R 5 10 M, C 5 100 pF, and L 5 1 H, use 
phasor notation to find the following:

  (a) i(t)

  (b) Vc (t), the voltage across the capacitor
4.13  (i) Show that the locus of the points P(x, y) obeying the equation

x2 1 y2 1 2gx 1 2fy 1 c 5 0

 represents a circle. (ii) Express the coordinates of the center and the radius. Use the 
following equations of circles to find the centers and radii.

x2 1 y2 1 8x  4y 1 11 5 0
x2 1 y2  10x  6y 1 9 5 0

225x2 1 225y2 1 90x  300y 1 28 5 0

MA-6 MATH ASSESSMENT

FIGURE MA-6 A series RLC  
circuit for Problem 4.12.

+
+

–

Vs Vc

R jωL

1
jωC–

i(t)

4.14  Recall the vector identity  3 A   3 A 1  3 A, where  is a scalar function 

and A is a vector point function. Suppose A 5 Azaz, where Az 5 
e2 jkr

r  and k is a 
 constant. Simplify  3 A.

4.15  Between two points A and B on the brink of a circular water pond, a transmission 
line has to be run. It costs twice the money per meter length to install the cable 
through the water compared to installation on the edge. One might take the cable (a) 
completely around the arc on the surrounding land or (b) straight through in the 
water or (c) partly on the arc and for the remaining, straight in the water. (i) What 
path costs the maximum money? (ii) Suggest an arrangement that minimizes the 
cost. With some numerical values, plot the cost function.

4.16  Show the following series expansion assuming |x| , 1:

1
11 2 x 2 2 5 1 1 2x 1 3x2 1 4x3 1 . . .
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CODES OF ETHICS

Engineering is a profession that makes significant contributions to the economic and social 
 well-being of people all over the world. As members of this important profession, engineers are 
expected to exhibit the highest standards of honesty and integrity. Unfortu nately, the engineering 
curriculum is so crowded that there is no room for a course on ethics in most schools. Although 
there are over 850 codes of ethics for different professions all over the world, the code of ethics 
of the Institute of Electrical and Electronics Engineers (IEEE) is presented here to give students a 
flavor of the importance of ethics in engineer ing professions.

We, the members of the IEEE, in recognition of the importance of our technologies in affecting 
the quality of life throughout the world, and in accepting a personal obligation to our profession, 
its members and the communities we serve, do hereby commit ourselves to the highest ethical and 
professional conduct and agree:

 1.  to accept responsibility in making engineering decisions consistent with the safety, health, 
and welfare of the public, and to disclose promptly factors that might endanger the public 
or the environment; 

 2.  to avoid real or perceived conflicts of interest whenever possible, and to disclose them to 
affected parties when they do exist; 

 3. to be honest and realistic in stating claims or estimates based on available data; 
 4. to reject bribery in all its forms; 
 5.  to improve the understanding of technology, its appropriate application, and po tential 

consequences; 
 6.  to maintain and improve our technical competence and to undertake technologi cal tasks 

for others only if qualified by training or experience, or after full disclo sure of pertinent 
limitations; 

 7.  to seek, accept, and offer honest criticism of technical work, to acknowledge and correct 
errors, and to credit properly the contributions of others; 

 8.  to treat fairly all persons regardless of such factors as race, religion, gender,  dis ability, age, or 
national origin; 

 9.  to avoid injuring others, their property, reputation, or employment by false or ma licious 
action; 

10.  to assist colleagues and co-workers in their professional development and to  sup port them 
in following this code of ethics.

—Courtesy of IEEE
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3

C H A P T E R

3

1.1 INTRODUCTION

Electromagnetics (EM) may be regarded as the study of the interactions between electric 
charges at rest and in motion. It entails the analysis, synthesis, physical interpretation, and 
application of electric and magnetic fields.

Electromagnetics (EM) is a branch of physics or electrical engineering in which  
electric and magnetic phenomena are studied.

EM principles find applications in various allied disciplines such as microwaves, antennas, 
electric machines, satellite communications, bioelectromagnetics, plasmas, nuclear research, 
fiber optics, electromagnetic interference and compatibility, electromechanical energy conver-
sion, radar meteorology, and remote sensing.1,2 In physical medicine, for example, EM power, 
in the form either of shortwaves or microwaves, is used to heat deep tissues and to stimulate 
certain physiological responses in order to relieve certain pathological conditions. EM fields 
are used in induction heaters for melting, forging, annealing, surface hardening, and soldering 
operations. Dielectric heating equipment uses shortwaves to join or seal thin sheets of plastic 
materials. EM energy offers many new and exciting possibilities in agriculture. It is used, for 
example, to change vegetable taste by reducing acidity.

EM devices include transformers, electric relays, radio/TV, telephones, electric motors, 
transmission lines, waveguides, antennas, optical fibers, radars, and lasers. The design of 
these devices requires thorough knowledge of the laws and principles of EM.

1For numerous applications of electrostatics, see J. M. Crowley, Fundamentals of Applied Electrostatics. New 
York: John Wiley & Sons, 1986.
2For other areas of applications of EM, see, for example, D. Teplitz, ed., Electromagnetism: Paths to Research. 
New York: Plenum Press, 1982.

VECTOR ALGEBRA

Books are the quietest and most constant friends; they are the most accessible and  

wisest of counselors, and most patient of teachers.
—CHARLES W. ELLIOT

1
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4 CHAPTER 1 VECTOR ALGEBRA

The subject of electromagnetic phenomena in this book can be summarized in Maxwell’s 
equations:

  = # D 5 rv  (1.1)

  = # B 5 0  (1.2)

  = 3 E 5 2
'B
't

 (1.3)

  = 3 H 5 J 1
'D
't

 (1.4)

where = 5 the vector differential operator
 D  5 the electric flux density
 B  5 the magnetic flux density
 E  5 the electric field intensity
 H  5 the magnetic field intensity
  v 5 the volume charge density
  J  5 the current density

Maxwell based these equations on previously known results, both experimental and theore-
tical. A quick look at these equations shows that we shall be dealing with vector quantities. It 
is consequently logical that we spend some time in Part 1 examining the mathematical tools 
required for this course. The derivation of eqs. (1.1) to (1.4) for time-invariant conditions 
and the physical significance of the quantities D, B, E, H, J, and v will be our aim in Parts 2 
and 3. In Part 4, we shall reexamine the equations for time-varying situations and apply 
them in our study of practical EM devices such as transmission lines, waveguides, antennas, 
fiber optics, and radar systems.

†1.2 A PREVIEW OF THE BOOK

1.3 SCALARS AND VECTORS

Vector analysis is a mathematical tool with which electromagnetic concepts are most con-
veniently expressed and best comprehended. We must learn its rules and techniques before 
we can confidently apply it. Since most students taking this course have little exposure to 
vector analysis, considerable attention is given to it in this and the next two chapters.3 This 
chapter introduces the basic concepts of vector algebra in Cartesian coordinates only. The 
next chapter builds on this and extends to other coordinate systems.

A quantity can be either a scalar or a vector. A scalar is a quantity that is completely 
specified by its magnitude.

†Indicates sections that may be skipped, explained briefly, or assigned as homework if the text is covered in one 
semester.
3The reader who feels no need for review of vector algebra can skip to the next chapter.
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1.4 Unit Vector 5

A scalar is a quantity that has only magnitude.

Quantities such as time, mass, distance, temperature, entropy, electric potential, and popu-
lation are scalars. A vector has not only magnitude, but direction in space.

A vector is a quantity that is described by both magnitude and direction.

Vector quantities include velocity, force, momentum, acceleration displacement, and electric 
field intensity. Another class of physical quantities is called tensors, of which scalars and vectors 
are special cases. For most of the time, we shall be concerned with scalars and vectors.4

To distinguish between a scalar and a vector it is customary to represent a vector by 
a letter with an arrow on top of it, such as A

>
 and B

>
, or by a letter in boldface type such as 

A and B. A scalar is represented simply by a letter—for example, A, B, U, and V.
EM theory is essentially a study of some particular fields.

A field is a function that specifies a particular quantity everywhere in a region.

A field may indicate variation of a quantity throughout space and perhaps with time. 
If the quantity is scalar (or vector), the field is said to be a scalar (or vector) field. Examples 
of scalar fields are temperature distribution in a building, sound intensity in a theater, electric 
potential in a region, and refractive index of a stratified medium. The gravitational force on 
a body in space and the velocity of raindrops in the atmosphere are examples of vector fields.

1.4 UNIT VECTOR

A vector A has both magnitude and direction. The magnitude of A is a scalar written as 
A or 0A 0 . A unit vector aA along A is defined as a vector whose magnitude is unity (i.e., 1) 
and its direction is along A; that is,

 aA 5
A
0A 0 5

A
A

 (1.5)

Note that 0 aA 0 5 1. Thus we may write A as

 A 5 AaA (1.6)

which completely specifies A in terms of its magnitude A and its direction aA.
A vector A in Cartesian (or rectangular) coordinates may be represented as

 1Ax, Ay, Az 2     or    Axax 1 Ayay 1 Azaz (1.7)

4For an elementary treatment of tensors, see, for example, A. I. Borisenko and I. E. Tarapor, Vector and Tensor 
Analysis with Applications. New York: Dover, 1979.
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6 CHAPTER 1 VECTOR ALGEBRA

where Ax, Ay, and Az are called the components of A in the x-, y-, and z-directions, respec- 
tively; ax, ay, and az are unit vectors in the x-, y-, and z-directions, respectively. For example,  
ax is a dimensionless vector of magnitude one in the direction of the increase of the x-axis. 
The unit vectors ax, ay, and az are illustrated in Figure 1.1(a), and the components of A along 
the coordinate axes are shown in Figure 1.1(b). The magnitude of vector A is given by

 A 5 "Ax
2 1 Ay

2 1 Az
2 (1.8)

and the unit vector along A is given by

 aA 5
Axax 1 Ayay 1 Azaz

"Ax
2 1 Ay

2 1 Az
2

 (1.9)

FIGURE 1.1 (a) Unit vectors ax, ay, and az, (b) components of A 
along ax, ay, and az.

1.5 VECTOR ADDITION AND SUBTRACTION

Two vectors A and B can be added together to give another vector C; that is,

 C 5 A 1 B (1.10)

The vector addition is carried out component by component. Thus, if A 5 1Ax, Ay, Az) 
and B 5 1Bx, By, Bz).

 C 5 1Ax 1 Bx 2ax 1 1Ay 1 By 2ay 1 1Az 1 Bz 2az (1.11)

Vector subtraction is similarly carried out as

 D 5 A 2 B 5 A 1 12B 2  
  5 1Ax 2 Bx 2ax 1 1Ay 2 By 2ay 1 1Az 2 Bz 2az 

(1.12)
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1.6 Position and Distance Vectors 7

Graphically, vector addition and subtraction are obtained by either the parallelogram rule 
or the head-to-tail rule as portrayed in Figures 1.2 and 1.3, respectively.

The three basic laws of algebra obeyed by any given vectors A, B, and C are summa-
rized as follows:

Law Addition Multiplication

Commutative A 1 B 5 B 1 A kA 5 Ak
Associative A 1 1B 1 C 2 5 1A 1 B 2 1 C k(,A) 5 (k,)A
Distributive k 1A 1 B 2 5 kA 1 kB

where k and , are scalars. Multiplication of a vector with another vector will be discussed 
in Section 1.7.

FIGURE 1.3 Vector subtraction  
D 5 A 2 B: (a) parallelogram rule,  
(b)  head-to-tail rule.

FIGURE 1.2 Vector addition C 5 A 1 B: (a) parallelogram rule,  
(b) head-to-tail rule.

1.6 POSITION AND DISTANCE VECTORS

A point P in Cartesian coordinates may be represented by (x, y, z).

The position vector rP (or radius vector) of point P is defined as the directed dis-
tance from the origin O to P; that is,

 rP 5 OP 5 xax 1 yay 1 zaz (1.13)
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8 CHAPTER 1 VECTOR ALGEBRA

The position vector of point P is useful in defining its position in space. Point (3, 4, 5), for 
example, and its position vector 3ax 1 4ay 1 5az are shown in Figure 1.4.

The distance vector is the displacement from one point to another.

If two points P and Q are given by (xP, yP, zP) and (xQ, yQ, zQ), the distance vector (or 
separation vector) is the displacement from P to Q as shown in Figure 1.5; that is,

 rPQ 5 rQ 2 rP

  5 1xQ 2 xP 2ax 1 1yQ 2 yP 2ay 1 1zQ 2 zP 2az (1.14)

The difference between a point P and a vector A should be noted. Though both P 
and A may be represented in the same manner as (x, y, z) and (Ax, Ay, Az), respectively, 
the point P is not a vector; only its position vector rP is a vector. Vector A may depend on 
point P, however. For example, if A 5 2xyax 1 y2ay 2 xz2az and P is 12, 21, 4 2 , then A at 
P would be 24ax 1 ay 2 32az. A vector field is said to be constant or uniform if it does 
not depend on space variables x, y, and z. For example, vector B 5 3ax 2 2ay 1 10az is a  
uniform vector while vector A 5 2xyax 1 y2ay 2 xz2az is not uniform because B is the 
same everywhere, whereas A varies from point to point.

O

FIGURE 1.4 Illustration of position vector 
rP 5 3ax 1 4ay 5 5az.

FIGURE 1.5 Distance vector rPQ.

EXAMPLE 1.1 If A 5 10ax 2 4ay 1 6az and B 5 2ax 1 ay, find (a) the component of A along ay, (b) the 
magnitude of 3A 2 B, (c) a unit vector along A 1 2B.
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1.6 Position and Distance Vectors 9

Solution:
(a) The component of A along ay is Ay 5 24.
(b) 3A 2 B 5 3 110, 24, 6 2 2 12, 1, 0 2
  5 130, 212, 18 2 2 12, 1, 0 2
  5 128, 213, 18 2

Hence,

 0 3A 2 B 0 5 "282 1 1213 2 2 1 118 2 2 5 "1277
 5 35.74

(c) Let C 5 A 1 2B 5 110, 24, 6 2  1  14, 2, 0 2 5 114, 22, 6 2 .
A unit vector along C is

ac 5
C
0C 0 5

114, 22, 6 2
"142 1 122 2 2 1 62

or

ac 5 0.9113ax 2 0.1302ay 1 0.3906az

Note that 0 ac 0 5 1 as expected.

PRACTICE EXERCISE 1.1

Given vectors A 5 ax 1 3az and B 5 5ax 1 2ay 2 6az, determine
(a) uA 1 Bu
(b) 5A 2 B
(c) The component of A along ay

(d) A unit vector parallel to 3A 1 B

Answer: (a) 7, (b) (0, 22, 21), (c) 0, (d) 6(0.9117, 0.2279, 0.3419).

Points P and Q are located at (0, 2, 4) and 123, 1, 5 2 . Calculate
(a) The position of vector rP

(b) The distance vector from P to Q
(c) The distance between P and Q
(d) A vector parallel to PQ with magnitude of 10

EXAMPLE 1.2
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