

PRACTICAL APPLICATIONS

Some of the real-life applications covered in this book are listed in order of appearance.

- Applications of electrostatics (Section 4.1)
- Electrostatic separation of solids (Example 4.3)
- Electrostatic discharge (ESD) (Section 4.11)
- Electrostatic shielding (Section 5.9B)
- High dielectric constant materials (Section 5.10)
- Graphene (Section 5.11) NEW
- Electrohydrodynamic pump (Example 6.1)
- Xerographic copying machine (Example 6.2)
- Parallel-plate capacitor, coaxial capacitor, and spherical capacitor (Section 6.5)
- RF MEMS (Section 6.8) (Chapter 12 opener) NEW
- Ink-jet printer (Problem 6.52)
- Microstrip lines (Sections 6.7, 11.8, and 14.6)
- Applications of magnetostatics (Section 7.1)
- Coaxial transmission line (Section 7.4C)
- Lightning (Section 7.9)
- Polywells (Section 7.10) NEW
- Magnetic resonant imaging (MRI) (Chapter 8 opener)
- Magnetic focusing of a beam of electrons (Example 8.2, Figure 8.2)
- Velocity filter for charged particles (Example 8.3, Figure 8.3)
- Inductance of common elements (Table 8.3)
- Electromagnet (Example 8.16)
- Magnetic levitation (Section 8.12)
- Hall effect (Section 8.13) NEW
- Direct current machine (Section 9.3B)
- Memristor (Section 9.8) NEW
- Optical nanocircuits (Section 9.9) NEW
- Homopolar generator disk (Problem 9.14)
- Microwaves (Section 10.11)
- Radar (Sections 10.11 and 13.9)
- 60 GHz technology (Section 10.12) NEW
- Bioelectromagnetics (Chapter 11 opener)
- Coaxial, two-line, and planar lines (Figure 11.1, Section 11.2)
- Quarter-wave transformer (Section 11.6A)
- Data cables (Section 11.8B)
- Metamaterials (Section 11.9) NEW
- Microwave imaging (Section 11.10) NEW
- Optical fiber (Section 12.9)
- Cloaking and invisibility (Section 12.10) NEW
- Smart antenna (Chapter 13 opener)
- Typical antennas (Section 13.1, Figure 13.2)
- Electromagnetic interference and compatibility (Section 13.10)
- Grounding and filtering (Section 13.10)
- Textile antennas and sensors (Section 13.11) NEW
- RFID (Section 13.12) NEW
- Commercial EM software-FEKO (Section 14.7) NEW
- COMSOL Multiphysics (Section 14.8) NEW
- CST Microwave Studio (Section 14.9) NEW

PHYSICAL CONSTANTS

Quantity (Units)	Symbol	Best Experimental Value*	Approximate Value for Problem Work
Permittivity of free space (F/m)	ε_{0}	8.854×10^{-12}	$\frac{10^{-9}}{36 \pi}$
Permeability of free space (H / m)	$\mu_{\text {o }}$	$4 \pi \times 10^{-7}$	12.6×10^{-7}
Intrinsic impedance of free space (Ω)	$\eta_{\text {o }}$	376.6	120π
Speed of light in vacuum (m / s)	c	2.998×10^{8}	3×10^{8}
Electron charge (C)	e	-1.6022×10^{-19}	-1.6×10^{-19}
Electron mass (kg)	$m_{\text {e }}$	9.1093×10^{-31}	9.1×10^{-31}
Proton mass (kg)	$m_{\text {p }}$	1.6726×10^{-27}	1.67×10^{-27}
Neutron mass (kg)	$m_{\text {n }}$	1.6749×10^{-27}	1.67×10^{-27}
Boltzmann constant (J/K)	κ	1.38065×10^{-23}	1.38×10^{-23}
Avogadro number (/kg-mole)	N	6.0221×10^{23}	6×10^{23}
Planck constant (s)	h	6.626×10^{-34}	6.62×10^{-34}
Acceleration due to gravity ($\mathrm{m} / \mathrm{s}^{2}$)	g	9.80665	9.8
Universal constant of gravitation	G	6.673×10^{-11}	6.66×10^{-11}
$\mathrm{N}(\mathrm{m} / \mathrm{kg})^{2}$			
Electron-volt (J)	eV	1.602176×10^{-19}	1.6×10^{-19}

[^0]
ELEMENTS OF ELECTROMAGNETICS

THE OXFORD SERIES
 IN ELECTRICAL AND COMPUTER ENGINEERING

Adel S. Sedra, Series Editor

Allen and Holberg, CMOS Analog Circuit Design, 3rd edition
Boncelet, Probability, Statistics, and Random Signals
Bobrow, Elementary Linear Circuit Analysis, 2nd edition
Bobrow, Fundamentals of Electrical Engineering, 2nd edition
Campbell, Fabrication Engineering at the Micro- and Nanoscale, 4th edition
Chen, Digital Signal Processing
Chen, Linear System Theory and Design, 4th edition
Chen, Signals and Systems, 3rd edition
Comer, Digital Logic and State Machine Design, 3rd edition
Comer, Microprocessor-Based System Design
Cooper and McGillem, Probabilistic Methods of Signal and System Analysis, 3rd edition
Dimitrijev, Principles of Semiconductor Device, 2nd edition
Dimitrijev, Understanding Semiconductor Devices
Fortney, Principles of Electronics: Analog \& Digital
Franco, Electric Circuits Fundamentals
Ghausi, Electronic Devices and Circuits: Discrete and Integrated
Guru and Hiziroğlu, Electric Machinery and Transformers, 3rd edition
Houts, Signal Analysis in Linear Systems
Jones, Introduction to Optical Fiber Communication Systems
Krein, Elements of Power Electronics, 2nd edition
Kuo, Digital Control Systems, 3rd edition
Lathi and Green, Linear Systems and Signals, 3rd edition
Lathi and Ding, Modern Digital and Analog Communication Systems, 5th edition
Lathi, Signal Processing and Linear Systems
Martin, Digital Integrated Circuit Design
Miner, Lines and Electromagnetic Fields for Engineers
Mitra, Signals and Systems
Parhami, Computer Architecture
Parhami, Computer Arithmetic, 2nd edition
Roberts and Sedra, SPICE, 2nd edition
Roberts, Taenzler, and Burns, An Introduction to Mixed-Signal IC Test and Measurement, 2nd edition
Roulston, An Introduction to the Physics of Semiconductor Devices
Sadiku, Elements of Electromagnetics, 7th edition
Santina, Stubberud, and Hostetter, Digital Control System Design, 2nd edition
Sarma, Introduction to Electrical Engineering
Schaumann, Xiao, and Van Valkenburg, Design of Analog Filters, 3rd edition
Schwarz and Oldham, Electrical Engineering: An Introduction, 2nd edition
Sedra and Smith, Microelectronic Circuits, 7th edition
Stefani, Shahian, Savant, and Hostetter, Design of Feedback Control Systems, 4th edition
Tsividis, Operation and Modeling of the MOS Transistor, 3rd edition
Van Valkenburg, Analog Filter Design
Warner and Grung, Semiconductor Device Electronics
Wolovich, Automatic Control Systems
Yariv and Yeh, Photonics: Optical Electronics in Modern Communications, 6th edition
Żak, Systems and Control

ELEMENTS OF ELECTROMAGNETICS

SEVENTH EDITION

MATTHEW N. O. SADIKU
Prairie View A\&M University

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and certain other countries.

Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America.
© 2018, 2015, 2010, 2007, 2000 by Oxford University Press
© 1994, 1989 by Holt, Rinehart, \& Winston, Inc

For titles covered by Section 112 of the US Higher Education Opportunity Act, please visit www.oup.com/us/he for the latest information about pricing and alternate formats.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by license, or under terms agreed with the appropriate reproduction rights organization. Inquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.
Library of Congress Cataloging-in-Publication Data
Names: Sadiku, Matthew N. O., author.
Title: Elements of Electromagnetics / Matthew N.O. Sadiku, Prairie View A\&M University.
Description: Seventh edition. | New York, NY, United States of America : Oxford University Press,
[2018] | Series: The Oxford series in electrical and computer engineering
Identifiers: LCCN 2017046497 | ISBN 9780190698614 (hardcover)
Subjects: LCSH: Electromagnetism.
Classification: LCC QC760 .S23 2018 | DDC 537—dc23 LC record available at
https://lccn.loc.gov/2017046497

987654321
Printed by LSC Communications, United States of America

BRIEF TABLE OF CONTENTS

MATH ASSESSMENT MA-1
Chapter 1 Vector Algebra 3
Chapter 2 Coordinate Systems and Transformation 31
Chapter 3 Vector Calculus 59
Chapter 4 Electrostatic Fields 111
Chapter 5 Electric Fields in Material Space 177
Chapter 6 Electrostatic Boundary-Value Problems 225
Chapter 7 Magnetostatic Fields 297
Chapter 8 Magnetic Forces, Materials, and Devices 349
Chapter 9 Maxwell's Equations 421
Chapter 10 Electromagnetic Wave Propagation 473
Chapter 11 Transmission Lines 553
Chapter 12 Waveguides 633
Chapter 13 Antennas 691
Chapter 14 Numerical Methods 757
Appendix A Mathematical Formulas 835
Appendix B Material Constants 845
Appendix C MATLAB 847
Appendix D The Complete Smith Chart 860
Appendix E Answers to Odd-Numbered Problems 861
Index 889

CONTENTS

BRIEF TABLE OF CONTENTS vi
PREFACE xiii
A NOTE TO THE STUDENT xvii
ABOUT THE AUTHOR xviii
MATH ASSESSMENT MA-1
PART 1: VECTOR ANALYSIS
1 VECTOR ALGEBRA 3
1.1 Introduction 3
${ }^{\dagger}$ 1.2 A Preview of the Book 4
1.3 Scalars and Vectors 4
1.4 Unit Vector 5
1.5 Vector Addition and Subtraction 6
1.6 Position and Distance Vectors 7
1.7 Vector Multiplication 11
1.8 Components of a Vector 16
Summary 23
Review Questions 24
Problems 25
2 COORDINATE SYSTEMS AND TRANSFORMATION 31
2.1 Introduction 31
2.2 Cartesian Coordinates (x, y, z) 32
2.3 Circular Cylindrical Coordinates (ρ, ϕ, z) 32
2.4 Spherical Coordinates (r, θ, ϕ) 35
2.5 Constant-Coordinate Surfaces 44
Summary 51
Review Questions 52
Problems 54
3 VECTOR CALCULUS 59
3.1 Introduction 59
3.2 Differential Length, Area, and Volume 59
3.3 Line, Surface, and Volume Integrals 66

[^1]3.4 Del Operator 69
3.5 Gradient of a Scalar 71
3.6 Divergence of a Vector and Divergence Theorem 75
3.7 Curl of a Vector and Stokes's Theorem 82
3.8 Laplacian of a Scalar 90
${ }^{\dagger}$ 3.9 Classification of Vector Fields 92
Summary 97
Review Questions 98
Problems 100
PART 2: ELECTROSTATICS
4 ELECTROSTATIC FIELDS 111
4.1 Introduction 111
4.2 Coulomb's Law and Field Intensity 112
4.3 Electric Fields due to Continuous Charge Distributions 119
4.4 Electric Flux Density 130
4.5 Gauss's Law-Maxwell's Equation 132
4.6 Applications of Gauss's Law 134
4.7 Electric Potential 141
4.8 Relationship between \mathbf{E} and $V-$ Maxwell's Equation 147
4.9 An Electric Dipole and Flux Lines 150
4.10 Energy Density in Electrostatic Fields 154
${ }^{\dagger}$ 4.11 Application Note-Electrostatic Discharge 159
Summary 164
Review Questions 167
Problems 168
5 ELECTRIC FIELDS IN MATERIAL SPACE 177
5.1 Introduction 177
5.2 Properties of Materials 177
5.3 Convection and Conduction Currents 178
5.4 Conductors 181
5.5 Polarization in Dielectrics 187
5.6 Dielectric Constant and Strength 190
${ }^{\dagger} 5.7$ Linear, Isotropic, and Homogeneous Dielectrics 191
5.8 Continuity Equation and Relaxation Time 196
5.9 Boundary Conditions 198
${ }^{\dagger} 5.10$ Application Note- Materials with High Dielectric Constant 207
5.11 Application Note-Graphene 208
${ }^{\dagger}$ 5.12 Application Note-Piezoelectrics 210
Summary 214
Review Questions 215
Problems 217
6 ELECTROSTATIC BOUNDARY-VALUE PROBLEMS 225
6.1 Introduction 225
6.2 Poisson's and Laplace's Equations 225
${ }^{\dagger} 6.3$ Uniqueness Theorem 227
6.4 General Procedures for Solving Poisson's or Laplace's Equation 228
6.5 Resistance and Capacitance 249
6.6 Method of Images 266
${ }^{\dagger}$ 6.7 Application Note-Capacitance of Microstrip Lines 272
6.8 Application Note—RF MEMS 275
${ }^{\dagger}$ 6.9 Application Note-Supercapacitors 276
Summary 280
Review Questions 281
Problems 282
PART 3: MAGNETOSTATICS
7 MAGNETOSTATIC FIELDS 297
7.1 Introduction 297
7.2 Biot-Savart's Law 298
7.3 Ampère's Circuit Law-Maxwell's Equation 309
7.4 Applications of Ampère's Law 309
7.5 Magnetic Flux Density—Maxwell's Equation 317
7.6 Maxwell's Equations for Static Fields 319
7.7 Magnetic Scalar and Vector Potentials 320
${ }^{\dagger} 7.8$ Derivation of Biot-Savart's Law and Ampère's Law 326
${ }^{\dagger} 7.9$ Application Note—Lightning 328
7.10 Application Note-Polywells 329
Summary 333
Review Questions 335
Problems 338
8 MAGNETIC FORCES, MATERIALS, AND DEVICES 349
8.1 Introduction 349
8.2 Forces due to Magnetic Fields 349
8.3 Magnetic Torque and Moment 361
8.4 A Magnetic Dipole 363
8.5 Magnetization in Materials 368
${ }^{\dagger}$ 8.6 Classification of Materials 372
8.7 Magnetic Boundary Conditions 376
8.8 Inductors and Inductances 381
8.9 Magnetic Energy 384
${ }^{\dagger}$ 8.10 Magnetic Circuits 392
${ }^{\dagger}$ 8.11 Force on Magnetic Materials 394
8.12 Application Note-Magnetic Levitation 399
${ }^{\dagger}$ 8.13 Application Note—SQUIDs 401
Summary 405
Review Questions 407
Problems 409
PART 4: WAVES AND APPLICATIONS
9 MAXWELL'S EQUATIONS 421
9.1 Introduction 421
9.2 Faraday's Law 422
9.3 Transformer and Motional Electromotive Forces 424
9.4 Displacement Current 433
9.5 Maxwell's Equations in Final Forms 436
${ }^{\dagger} 9.6$ Time-Varying Potentials 439
9.7 Time-Harmonic Fields 441
${ }^{\dagger} 9.8$ Application Note-Memristor 454
${ }^{\dagger}$ 9.9 Application Note-Optical Nanocircuits 455
${ }^{\dagger} 9.10$ Application Note-Wireless Power Transfer and Qi Standard 457
Summary 460
Review Questions 461
Problems 463
10 ELECTROMAGNETIC WAVE PROPAGATION 473
10.1 Introduction 473
${ }^{\dagger} \mathbf{1 0 . 2}$ Waves in General 474
10.3 Wave Propagation in Lossy Dielectrics 480
10.4 Plane Waves in Lossless Dielectrics 487
10.5 Plane Waves in Free Space 487
10.6 Plane Waves in Good Conductors 489
10.7 Wave Polarization 498
10.8 Power and the Poynting Vector 502
10.9 Reflection of a Plane Wave at Normal Incidence 506
${ }^{\dagger}$ 10.10 Reflection of a Plane Wave at Oblique Incidence 517
${ }^{\dagger}$ 10.11 Application Note-Microwaves 529
10.12 Application Note- 60 GHz Technology 534
Summary 537
Review Questions 538
Problems 540
11 TRANSMISSION LINES 553
11.1 Introduction 553
11.2 Transmission Line Parameters 554
11.3 Transmission Line Equations 557
11.4 Input Impedance, Standing Wave Ratio, and Power 564
11.5 The Smith Chart 572
11.6 Some Applications of Transmission Lines 585
${ }^{\dagger} 11.7$ Transients on Transmission Lines 592
${ }^{\dagger}$ 11.8 Application Note-Microstrip Lines and Characterization of Data Cables 604
11.9 Application Note-Metamaterials 612
${ }^{\dagger}$ 11.10 Application Note-Microwave Imaging 613
Summary 617
Review Questions 618
Problems 621
12 WAVEGUIDES 633
12.1 Introduction 633
12.2 Rectangular Waveguides 634
12.3 Transverse Magnetic Modes 638
12.4 Transverse Electric Modes 643
12.5 Wave Propagation in the Guide 654
12.6 Power Transmission and Attenuation 656
${ }^{\dagger}$ 12.7 Waveguide Current and Mode Excitation 660
12.8 Waveguide Resonators 666
${ }^{\dagger}$ 12.9 Application Note-Optical Fiber 672
${ }^{\dagger}$ 12.10 Application Note-Cloaking and Invisibility 678
Summary 680
Review Questions 682
Problems 683
13 ANTENNAS 691
13.1 Introduction 691
13.2 Hertzian Dipole 693
13.3 Half-Wave Dipole Antenna 697
13.4 Quarter-Wave Monopole Antenna 701
13.5 Small-Loop Antenna 702
13.6 Antenna Characteristics 707
13.7 Antenna Arrays 715
${ }^{\dagger}$ 13.8 Effective Area and the Friis Equation 725
${ }^{\dagger}$ 13.9 The Radar Equation 728
${ }^{\dagger}$ 13.10 Application Note-Electromagnetic Interference and Compatibility 732
${ }^{\dagger}$ 13.11 Application Note-Textile Antennas and Sensors 737
${ }^{\dagger}$ 13.12 Application Note-Fractal Antennas 739
13.13 Application Note-RFID 742
Summary 745
Review Questions 746
Problems 747
14 NUMERICAL METHODS 757
14.1 Introduction 757
${ }^{\dagger} 14.2$ Field Plotting 758
14.3 The Finite Difference Method 766
14.4 The Moment Method 779
14.5 The Finite Element Method 791
${ }^{\dagger}$ 14.6 Application Note-Microstrip Lines 810
Summary 820
Review Questions 820
Problems 822
APPENDIX A Mathematical Formulas 835
APPENDIX B Material Constants 845
APPENDIXC MATLAB 847
APPENDIX D The Complete Smith Chart 860
APPENDIX E Answers to Odd-Numbered Problems 861
INDEX 889

This new edition is intended to provide an introduction to engineering electromagnetics (EM) at the junior or senior level. Although the new edition improves on the previous editions, the core of the subject of EM has not changed. The fundamental objective of the first edition has been retained: to present EM concepts in a clearer and more interesting manner than other texts. This objective is achieved in the following ways:

1. To avoid complicating matters by covering EM and mathematical concepts simultaneously, vector analysis is covered at the beginning of the text and applied gradually. This approach avoids breaking in repeatedly with more background on vector analysis, thereby creating discontinuity in the flow of thought. It also separates mathematical theorems from physical concepts and makes it easier for the student to grasp the generality of those theorems. Vector analysis is the backbone of the mathematical formulation of EM problems.
2. Each chapter opens either with a historical profile of some electromagnetic pioneers or with a discussion of a modern topic related to the chapter. The chapter starts with a brief introduction that serves as a guide to the whole chapter and also links the chapter to the rest of the book. The introduction helps the students see the need for the chapter and how it relates to the previous chapter. Key points are emphasized to draw the reader's attention. A brief summary of the major concepts is discussed toward the end of the chapter.
3. To ensure that students clearly get the gist of the matter, key terms are defined and highlighted. Important formulas are boxed to help students identify essential formulas.
4. Each chapter includes a reasonable amount of solved examples. Since the examples are part of the text, they are clearly explained without asking the reader to fill in missing steps. In writing out the solution, we aim for clarity rather than efficiency. Thoroughly worked out examples give students confidence to solve problems themselves and to learn to apply concepts, which is an integral part of engineering education. Each illustrative example is followed by a problem in the form of a Practice Exercise, with the answer provided.
5. At the end of each chapter are ten review questions in the form of multiple-choice objective items. Open-ended questions, although they are intended to be thought-provoking, are ignored by most students. Objective review questions with answers immediately following them provide encouragement for students to do the problems and gain immediate feedback. A large number of problems are provided and are presented in the same order as the material in the main text. Approximately 20 to 25 percent of the problems in this edition have been replaced. Problems of intermediate difficulty are identified by a single asterisk; the most difficult problems are marked with a double asterisk. Enough problems are provided to allow the instructor to choose some as examples and assign some as homework problems. Answers to odd-numbered problems are provided in Appendix E.
6. Since most practical applications involve time-varying fields, six chapters are devoted to such fields. However, static fields are given proper emphasis because they are special cases of dynamic fields. Ignorance of electrostatics is no longer acceptable
because there are large industries, such as copier and computer peripheral manufacturing, that rely on a clear understanding of electrostatics.
7. The last section in each chapter is devoted to applications of the concepts covered in the chapter. This helps students see how concepts apply to real-life situations.
8. The last chapter covers numerical methods with practical applications and MATLAB programs. This chapter is of paramount importance because most practical problems are only solvable using numerical techniques. Since MATLAB is used throughout the book, an introduction to MATLAB is provided in Appendix C.
9. Over 130 illustrative examples and 300 figures are given in the text. Some additional learning aids such as basic mathematical formulas and identities are included in Appendix A. Another guide is a special note to students, which follows this preface.

NEW TO THE SIXTH EDITION

- Five new Application Notes designed to explain the real-world connections between the concepts discussed in the text.
- A revised Math Assessment test, for instructors to gauge their students' mathematical knowledge and preparedness for the course.
- New and updated end-of-chapter problems.

Solutions to the end-of-chapter problems and the Math Assessment, as well as PowerPoint slides of all figures in the text, can be found at the Oxford University Press Ancillary Resource Center.

Students and professors can view Application Notes from previous editions of the text on the book's companion website www.oup.com/us/sadiku.

Although this book is intended to be self-explanatory and useful for self-instruction, the personal contact that is always needed in teaching is not forgotten. The actual choice of course topics, as well as emphasis, depends on the preference of the individual instructor. For example, an instructor who feels that too much space is devoted to vector analysis or static fields may skip some of the materials; however, the students may use them as reference. Also, having covered Chapters 1 to 3, it is possible to explore Chapters 9 to 14. Instructors who disagree with the vector-calculus-first approach may proceed with Chapters 1 and 2, then skip to Chapter 4, and refer to Chapter 3 as needed. Enough material is covered for two-semester courses. If the text is to be covered in one semester, covering Chapters 1 to 9 is recommended; some sections may be skipped, explained briefly, or assigned as homework. Sections marked with the dagger sign (\dagger) may be in this category.

ACKNOWLEDGMENTS

I thank Dr. Sudarshan Nelatury of Penn State University for providing the new Application Notes and the Math Assessment test. It would not be possible to prepare this edition without the efforts of Executive Editor Dan Kaveney, Associate Editor Christine Mahon, Assistant Editor Megan Carlson, Marketing Manager David Jurman, Marketing Assistant Colleen Rowe, Production Editor Claudia Dukeshire, and Designer Michele Laseau at Oxford University Press, as well as Susan Brown and Betty Pessagno.

I thank the reviewers who provided helpful feedback for this edition:

Mohammadreza (Reza) Barzegaran	Sudarshan Nelatury
Lamar University	Penn State Erie
Sharif M. A. Bhuiyan	Sima Noghanian
Tuskegee University	University of North Dakota
Muhammad Dawood	Vladimir Rakov
New Mexico State University	University of Florida
Robert Gauthier	Lisa Shatz
Carleton University	Suffolk University
Jesmin Khan	Kyle Sundqvist
Tuskegee University	Texas A\&M University
Edwin Marengo	Lili H. Tabrizi
Northeastern University	California State University, Los Angeles

Perambur S. Neelakanta
Florida Atlantic University

I also offer thanks to those who reviewed previous editions of the text:
Yinchao Chen Douglas T. Petkie
University of South Carolina
Satinderpaul Singh Devgan
Tennessee State University
Dentcho Angelov Genov
Louisiana Tech University
Scott Grenquist
Wentworth Institute of Technology
Xiaomin Jin
Wright State University
James E. Richie
Marquette University
Elena Semouchkina
Michigan Technological University
Barry Spielman
Washington University

Cal Poly State University, San Luis Obispo
Murat Tanik

Jaeyoun Kim
Iowa State University
Caicheng Lu
University of Kentucky
Perambur S. Neelakantaswamy
Florida Atlantic University
Kurt E. Oughstun
University of Vermont

University of Alabama-Birmingham
Erdem Topsakal
Mississippi State University
Charles R. Westgate Sr.
SUNY-Binghamton
Weldon J. Wilson
University of Central Oklahoma
Yan Zhang
University of Oklahoma

I am grateful to Dr. Kendall Harris, dean of the College of Engineering at Prairie View A\&M University, and Dr. Pamela Obiomon, head of the Department of Electrical and

Computer Engineering, for their constant support. I would like to express my gratitude to Dr. Vichate Ungvichian, at Florida Atlantic University, for pointing out some errors. I acknowledge Emmanuel Shadare for help with the figures. A well-deserved expression of appreciation goes to my wife and our children for their constant support and prayer.

I owe special thanks for those professors and students who have used earlier editions of the book. Please keep sending those errors directly to the publisher or to me at sadiku@ieee.org.
-Matthew N.O. Sadiku
Prairie View, Texas

A NOTE TO THE STUDENT

Electromagnetic theory is generally regarded by students as one of the most difficult courses in physics or the electrical engineering curriculum. But this conception may be proved wrong if you take some precautions. From experience, the following ideas are provided to help you perform to the best of your ability with the aid of this textbook:

1. Pay particular attention to Part 1 on vector analysis, the mathematical tool for this course. Without a clear understanding of this section, you may have problems with the rest of the book.
2. Do not attempt to memorize too many formulas. Memorize only the basic ones, which are usually boxed, and try to derive others from these. Try to understand how formulas are related. There is nothing like a general formula for solving all problems. Each formula has limitations owing to the assumptions made in obtaining it. Be aware of those assumptions and use the formula accordingly.
3. Try to identify the key words or terms in a given definition or law. Knowing the meaning of these key words is essential for proper application of the definition or law.
4. Attempt to solve as many problems as you can. Practice is the best way to gain skill. The best way to understand the formulas and assimilate the material is by solving problems. It is recommended that you solve at least the problems in the Practice Exercise immediately following each illustrative example. Sketch a diagram illustrating the problem before attempting to solve it mathematically. Sketching the diagram not only makes the problem easier to solve, but also helps you understand the problem by simplifying and organizing your thinking process. Note that unless otherwise stated, all distances are in meters. For example $(2,-1,5)$ actually means ($2 \mathrm{~m},-1 \mathrm{~m}, 5 \mathrm{~m}$).

You may use MATLAB to do number crunching and plotting. A brief introduction to MATLAB is provided in Appendix C.

A list of the powers of 10 and Greek letters commonly used throughout this text is provided in the tables located on the inside cover. Important formulas in calculus, vectors, and complex analysis are provided in Appendix A. Answers to odd-numbered problems are in Appendix E.

ABOUT THE AUTHOR

Matthew N. O. Sadiku received his BSc degree in 1978 from Ahmadu Bello University, Zaria, Nigeria, and his MSc and PhD degrees from Tennessee Technological University, Cookeville, Tennessee, in 1982 and 1984, respectively. From 1984 to 1988, he was an assistant professor at Florida Atlantic University, Boca Raton, Florida, where he did graduate work in computer science. From 1988 to 2000, he was at Temple University, Philadelphia, Pennsylvania, where he became a full professor. From 2000 to 2002, he was with Lucent/ Avaya, Holmdel, New Jersey, as a system engineer and with Boeing Satellite Systems, Los Angeles, California, as a senior scientist. He is currently a professor of electrical and computer engineering at Prairie View A\&M University, Prairie View, Texas.

He is the author of over 370 professional papers and over 70 books, including Elements of Electromagnetics (Oxford University Press, 7th ed., 2018), Fundamentals of Electric Circuits (McGraw-Hill, 6th ed., 2017, with C. Alexander), Computational Electromagnetics with MATLAB (CRC, 4th ed., 2018), Metropolitan Area Networks (CRC Press, 1995), and Principles of Modern Communication Systems (Cambridge University Press, 2017, with S. O. Agbo). In addition to the engineering books, he has written Christian books including Secrets of Successful Marriages, How to Discover God's Will for Your Life, and commentaries on all the books of the New Testament Bible. Some of his books have been translated into French, Korean, Chinese (and Chinese Long Form in Taiwan), Italian, Portuguese, and Spanish.

He was the recipient of the 2000 McGraw-Hill/Jacob Millman Award for outstanding contributions in the field of electrical engineering. He was also the recipient of Regents Professor award for 2012-2013 by the Texas A\&M University System. He is a registered professional engineer and a fellow of the Institute of Electrical and Electronics Engineers (IEEE) "for contributions to computational electromagnetics and engineering education." He was the IEEE Region 2 Student Activities Committee Chairman. He was an associate editor for IEEE Transactions on Education. He is also a member of the Association for Computing Machinery (ACM) and the American Society of Engineering Education (ASEE). His current research interests are in the areas of computational electromagnetics, computer networks, and engineering education. His works can be found in his autobiography, My Life and Work (Trafford Publishing, 2017) or on his website, www.matthewsadiku.com. He currently resides with his wife Kikelomo in Hockley, Texas. He can be reached via email at sadiku@ieee.org.

MATH ASSESSMENT

1.1 Let θ be the angle between the vectors \mathbf{A} and \mathbf{B}. What can be said about θ if (i) $|\mathbf{A}+\mathbf{B}|<|\mathbf{A}-\mathbf{B}|$, (ii) $|\mathbf{A}+\mathbf{B}|=|\mathbf{A}-\mathbf{B}|$, (iii) $|\mathbf{A}+\mathbf{B}|>|\mathbf{A}-\mathbf{B}|$?
1.2 Two sides of a parallelogram $A B C D$ denoted as $\mathbf{p}=5 \boldsymbol{a}_{x}$ and $\mathbf{q}=3 \boldsymbol{a}_{x}+4 \boldsymbol{a}_{y}$ are shown in Figure MA-1 Let the diagonals intersect at O and make an angle α. Find the coordinates of O and the magnitude of α. Based on the value of α, what can we call $A B C D$?

FIGURE MA-1 Parallelogram $A B C D$.
1.3 What is the distance R between the two points $A(3,5,1)$ and $B(5,7,2)$? Also find its reciprocal, $\frac{1}{R}$.
1.4 What is the distance vector $\mathbf{R}_{A B}$ from $A(3,7,1)$ to $B(8,19,2)$ and a unit vector $\mathbf{a}_{A B}$ in the direction of $\mathbf{R}_{A B}$?
1.5 Find the interval of values x takes so that a unit vector \mathbf{u} satisfies $|(x-2) \mathbf{u}|<|3 \mathbf{u}|$.
1.6 There are four charges in space at four points A, B, C, and D, each 1 m from every other. You are asked to make a selection of coordinates for these charges. How do you place them in space and select their coordinates? There is no unique way.
1.7 A man driving a car starts at point O, drives in the following pattern

15 km northeast to point A,
20 km southwest to point B,
25 km north to C,
10 km southeast to D,
15 km west to E, and stops.
How far is he from his starting point, and in what direction?
1.8 A unit vector \mathbf{a}_{n} makes angles α, β, and γ with the x-, y-, and z-axes, respectively. Express \mathbf{a}_{n} in the rectangular coordinate system. Also express a nonunit vector $\overrightarrow{O P}$ of length ℓ parallel to \mathbf{a}_{n}.
1.9 Three vectors \mathbf{p}, \mathbf{q}, and \mathbf{r} sum to a zero vector and have the magnitude of 10,11 , and 15 , respectively. Determine the value of $\mathbf{p} \cdot \mathbf{q}+\mathbf{q} \cdot \mathbf{r}+\mathbf{r} \cdot \mathbf{p}$.
1.10 An experiment revealed that the point $Q\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is 4 m from $P(2,1,4)$ and that the vector $\overrightarrow{Q P}$ makes $45.5225^{\circ}, 59.4003^{\circ}$, and 60° with the x-, y-, and z-axes, respectively. Determine the location of Q.
1.11 In a certain frame of reference with x-, y-, and z-axes, imagine the first octant to be a room with a door. Suppose that the height of the door is h and its width is ρ. The top-right corner P of the door when it is shut has the rectangular coordinates $(\rho, 0, h)$. Now if the door is turned by angle ϕ, so we can enter the room, what are the coordinates of P ? What is the length of its diagonal $r=\overline{O P}$ in terms of ρ and z ? Suppose the vector $\overrightarrow{O P}$ makes an angle θ with the z-axis; express ρ and h in terms of r and θ.
1.12 Consider two vectors $\mathbf{p}=\overrightarrow{O P}$ and $\mathbf{q}=\overrightarrow{O Q}$ in Figure MA-2. Express the vector $\overrightarrow{G R}$ in terms of \mathbf{p} and \mathbf{q}. Assume that $\angle O R Q=90^{\circ}$.

FIGURE MA-2 Orthogonal projection of one vector over another.
1.13 Consider the equations of two planes:

$$
\begin{aligned}
& 3 x-2 y-z=8 \\
& 2 x+y+4 z=3
\end{aligned}
$$

Let them intersect along the straight line ℓ. Obtain the coordinates of the points where ℓ meets the $x y$-and the $y z$-planes. Also determine the angle between ℓ and the $x z$-plane.
1.14 Given two vectors $\mathbf{p}=\mathbf{a}_{x}+\mathbf{a}_{y}$ and $\mathbf{q}=\mathbf{a}_{y}+\mathbf{a}_{z}$ of equal length, find a third vector \mathbf{r} such that it has the same length and the angle between any two of them is 60°.
1.15 Given $\mathbf{A}=2 x y \mathbf{a}_{x}+3 z y \mathbf{a}_{y}+5 z \mathbf{a}_{z}$ and $\mathbf{B}=\sin x \mathbf{a}_{x}+2 y \mathbf{a}_{y}+5 y \mathbf{a}_{z}$, find (i) $\nabla \cdot \mathbf{A}$, (ii) $\nabla \times \mathbf{A}$, (iii) $\nabla \cdot \nabla \times \mathbf{A}$, and (iv) $\nabla \cdot(\mathbf{A} \times \mathbf{B})$.
2.1 A triangular plate of base $b=5$ and height $h=4$ shown in Figure MA- 3 is uniformly charged with a uniform surface charge density $\rho_{s}=10 \mathrm{C} / \mathrm{m}^{2}$. You are to cut a rectangular piece so that maximum amount of charge is taken out. What should be the dimensions x and y of the rectangle? What is the magnitude of the charge extracted out?
2.2 Consider two fixed points $F_{1}(-c, 0)$ and $F_{2}(c, 0)$ in the $x y$-plane. Show that the locus of a point $P(x, y)$ that satisfies the constraint that the sum $P F_{1}+P F_{2}$ remains constant and is equal to $2 a$ is an ellipse. The equipotential loci due to a uniform line charge of length $2 c$ are family of ellipses in the plane containing the charge. This problem helps in proving it.
2.3 Show that the ordinary angle subtended by a closed curve lying in a plane at a point P is 2π radians if P is enclosed by the curve and zero if not.

FIGURE MA-3 A rectangular piece cut out from a triangular plate.
2.4 Show that the solid angle subtended by a closed surface at a point P is 4π steradians if P is enclosed by the closed surface and zero if not.
2.5 The electrostatic potential $V(r)$ is known to obey the equation $V(r)=2 V(2 r)$ with the boundary condition $V(5)=3$ volts. Determine $V(15)$.
2.6 Evaluate the indefinite integrals (i) $\int \operatorname{cosec} \theta d \theta$ and (ii) $\int \sec \theta d \theta$. Ignore the arbi-
trary constant. trary constant.
2.7 A liquid drop is in the form of an ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ shown in Figure MA-4 and is filled with a charge of nonuniform density $\rho_{v}=x^{2} \mathrm{C} / \mathrm{m}^{3}$. Find the total charge in the drop.
2.8 Two families of curves are said to be orthogonal to each other if they intersect at 90°. Given a family $y^{2}=c x^{3}$, find the equation for orthogonal trajectories and plot three to four members of each on the same graph.
2.9 Consider a vector given by $\mathbf{E}=(4 x y+z) \mathbf{a}_{x}+2 x^{2} \mathbf{a}_{y}+x \mathbf{a}_{z}$. Find the line integral from $A(3,7,1)$ to $B(8,9,2)$ by \quad (i) evaluating the line integral $V_{A B}=-\int_{A}^{B} \mathbf{E} \cdot \mathbf{d l}$ along the line joining A to B and (ii) evaluating $\left\{-\int_{A}^{C} \mathbf{E} \cdot \mathbf{d} \mathbf{l}-\int_{C}^{D} \mathbf{E} \cdot \mathbf{d} \mathbf{l}-\int_{D}^{B} \mathbf{E} \cdot \mathbf{d} \mathbf{l}\right\}$, where the stopovers C and D are $C(8,7,1)$ and $D(8,9,1)$.

FIGURE MA-4 A non uniformly charged liquid drop.
2.10 Find the trigonometric Fourier series of a function $f(x)=x+x^{2}$ defined over the interval $-\pi<x<\pi$.
2.11 In a certain electrostatic system, there are found an infinite set of image point charges. The field intensity at a point may be written as

$$
E=A \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} \frac{(-1)^{(n-1)}}{n^{2}}
$$

Simplify the double summation.
Hint: Integrating the following series term by term and substituting $x=1$ helps in finding the result.

$$
\frac{1}{1+x}=1-x+x^{2}-x^{3}+\cdots+-\cdots
$$

2.12 Solve the differential equation

$$
\frac{d^{2} V(x)}{d x^{2}}=\frac{k}{\sqrt{V(x)}}
$$

subject to the boundary conditions $\left.\frac{d V}{d x}\right|_{x=0}=0$ and $V(0)=0$. Assume that k is a constant.
3.1 The location of a moving charge is given by the time-varying radius vector $\mathbf{r}=2$ $\cos t \mathbf{a}_{x}+2 \sin t \mathbf{a}_{y}+3 t \mathbf{a}_{z}$. Describe the trajectory of motion. Find the velocity and acceleration vectors at any instant t. In particular, indicate their directions at the specific instants $t=0$ and $t=\pi / 2$. Find their magnitudes at any instant.
3.2 The magnetic field strength $H(z)$ at a point on the z-axis shown in Figure MA-5 is proportional to the sum of cosine of angles and is given by $H=k\left(\cos \theta_{1}+\cos \theta_{2}\right)$. Find $H(0)$. Also show that if $a \ll \ell, H(\pm \ell) \approx \frac{1}{2} H(0)$. This helps in finding the magnetic field along the axis of a long solenoid.
3.3 Suppose it is suggested that $\mathbf{B}=r(\mathbf{k} \times \mathbf{r})$ is the magnetic flux density vector, where \mathbf{k} is a constant vector and $\mathbf{r}=r \mathbf{a}_{r}$ verify if it is solenoidal.

FIGURE MA-5 Toward finding magnetic field along the axis of a solenoid.
3.4 Evaluate the line integral $\oint_{C} \frac{(x+y) d x+(x-y) d y}{x^{2}+y^{2}}$ where C is the circle $x^{2}+y^{2}=$ a^{2} of constant radius a.
3.5 Evaluate the line integral $\oint_{C} \frac{x d y-y d x}{x^{2}+y^{2}}$ where C is a closed curve (i) encircling the origin n times, (ii) not enclosing the origin.
4.1 Show that $\nabla \cdot \nabla \times \mathbf{A}=0$.
4.2 Show that $\nabla \times \nabla \psi=\mathbf{0}$.
4.3 Given that the imaginary unit is $j=\sqrt{-1}$ and that $x=j^{j}$, could the value of x be real? If so, is it unique? Can x have one value in the interval $(100,120)$?
4.4 Show that $\nabla \cdot \mathbf{A} \times \mathbf{B}=\mathbf{B} \cdot \nabla \times \mathbf{A}-\mathbf{A} \cdot \nabla \times \mathbf{B}$.
4.5 Use De Moivre's theorem to prove that $\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta$:
4.6 Determine \sqrt{j}.
4.7 Determine \sqrt{j} using the Euler formula.
4.8 Find the phasors for the following field quantities:
(a) $E_{x}(z, t)=E_{0} \cos (\omega t-\beta z+\phi)(\mathrm{V} / \mathrm{m})$
(b) $E_{y}(z, t)=100 e^{-3 z} \cos (\omega t-5 z+\pi / 4)(\mathrm{V} / \mathrm{m})$
(c) $H_{x}(z, t)=H_{0} \cos (\omega t+\beta z)(\mathrm{A} / \mathrm{m})$
(d) $H_{y}(z, t)=120 \pi e^{-5 z} \cos \left(\omega t+\beta z+\phi_{h}\right)(\mathrm{A} / \mathrm{m})$
4.9 Find the instantaneous time domain sinusoidal functions corresponding to the following phasors:
(a) $E_{x}(z)=E_{0} e^{j \beta z}(\mathrm{~V} / \mathrm{m})$
(b) $E_{y}(z)=100 e^{-3 z} e^{-j 5 z}(\mathrm{~V} / \mathrm{m})$
(c) $I_{s}(z)=5+j 4(\mathrm{~A})$
(d) $V_{s}(z)=j 10 e^{j \pi / 3}(\mathrm{~V})$
4.10 Write the phasor expression \tilde{I} for the following current using a cosine reference.
(a) $i(t)=I_{0} \cos (\omega t-\pi / 6)$
(b) $i(t)=I_{\mathrm{o}} \sin (\omega t+\pi / 3)$
4.11 In a certain resonant cavity, the resonant modes are described by a triplet of nonnegative integers m, n, and p. Find possible solutions under the inequality constraints,

$$
\begin{gathered}
m n+n p+p m \neq 0 \\
\frac{13}{16} \leq \frac{m^{2}}{4}+\frac{n^{2}}{9}+p^{2} \leq \frac{5}{4}
\end{gathered}
$$

4.12 A voltage source $V(t)=100 \cos \left(6 \pi 10^{9} t-45^{\circ}\right)(V)$ is connected to a series RLC circuit, as shown in Figure MA-6. Given $R=10 \mathrm{M} \Omega, C=100 \mathrm{pF}$, and $L=1 \mathrm{H}$, use phasor notation to find the following:
(a) $i(t)$
(b) $V_{c}(t)$, the voltage across the capacitor
4.13 (i) Show that the locus of the points $P(x, y)$ obeying the equation

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

represents a circle. (ii) Express the coordinates of the center and the radius. Use the following equations of circles to find the centers and radii.

$$
\begin{aligned}
x^{2}+y^{2}+8 x-4 y+11 & =0 \\
x^{2}+y^{2}-10 x-6 y+9 & =0 \\
225 x^{2}+225 y^{2}+90 x-300 y+28 & =0
\end{aligned}
$$

FIGURE MA-6 A series RLC circuit for Problem 4.12.
4.14 Recall the vector identity $\nabla \times \psi \mathbf{A} \equiv \psi \nabla \times \mathrm{A}+\nabla \psi \times \mathbf{A}$, where ψ is a scalar function and \mathbf{A} is a vector point function. Suppose $\mathbf{A}=A_{z} \mathbf{a}_{z}$, where $A_{z}=\frac{e^{-j k r}}{r}$ and k is a constant. Simplify $\nabla \times \mathbf{A}$.
4.15 Between two points A and B on the brink of a circular water pond, a transmission line has to be run. It costs twice the money per meter length to install the cable through the water compared to installation on the edge. One might take the cable (a) completely around the arc on the surrounding land or (b) straight through in the water or (c) partly on the arc and for the remaining, straight in the water. (i) What path costs the maximum money? (ii) Suggest an arrangement that minimizes the cost. With some numerical values, plot the cost function.
4.16 Show the following series expansion assuming $|x|<1$:

$$
\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\cdots
$$

PART
1

VECTOR ANALYSIS

CODES OF ETHICS

Engineering is a profession that makes significant contributions to the economic and social well-being of people all over the world. As members of this important profession, engineers are expected to exhibit the highest standards of honesty and integrity. Unfortunately, the engineering curriculum is so crowded that there is no room for a course on ethics in most schools. Although there are over 850 codes of ethics for different professions all over the world, the code of ethics of the Institute of Electrical and Electronics Engineers (IEEE) is presented here to give students a flavor of the importance of ethics in engineering professions.

We, the members of the IEEE, in recognition of the importance of our technologies in affecting the quality of life throughout the world, and in accepting a personal obligation to our profession, its members and the communities we serve, do hereby commit ourselves to the highest ethical and professional conduct and agree:

1. to accept responsibility in making engineering decisions consistent with the safety, health, and welfare of the public, and to disclose promptly factors that might endanger the public or the environment;
2. to avoid real or perceived conflicts of interest whenever possible, and to disclose them to affected parties when they do exist;
3. to be honest and realistic in stating claims or estimates based on available data;
4. to reject bribery in all its forms;
5. to improve the understanding of technology, its appropriate application, and potential consequences;
6. to maintain and improve our technical competence and to undertake technological tasks for others only if qualified by training or experience, or after full disclosure of pertinent limitations;
7. to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to credit properly the contributions of others;
8. to treat fairly all persons regardless of such factors as race, religion, gender, disability, age, or national origin;
9. to avoid injuring others, their property, reputation, or employment by false or malicious action;
10. to assist colleagues and co-workers in their professional development and to support them in following this code of ethics.

VECTOR ALGEBRA

Books are the quietest and most constant friends; they are the most accessible and wisest of counselors, and most patient of teachers.

-CHARLES W. ELLIOT

1.1 INTRODUCTION

Electromagnetics (EM) may be regarded as the study of the interactions between electric charges at rest and in motion. It entails the analysis, synthesis, physical interpretation, and application of electric and magnetic fields.

Electromagnetics (EM) is a branch of physics or electrical engineering in which electric and magnetic phenomena are studied.

EM principles find applications in various allied disciplines such as microwaves, antennas, electric machines, satellite communications, bioelectromagnetics, plasmas, nuclear research, fiber optics, electromagnetic interference and compatibility, electromechanical energy conversion, radar meteorology, and remote sensing. ${ }^{1,2}$ In physical medicine, for example, EM power, in the form either of shortwaves or microwaves, is used to heat deep tissues and to stimulate certain physiological responses in order to relieve certain pathological conditions. EM fields are used in induction heaters for melting, forging, annealing, surface hardening, and soldering operations. Dielectric heating equipment uses shortwaves to join or seal thin sheets of plastic materials. EM energy offers many new and exciting possibilities in agriculture. It is used, for example, to change vegetable taste by reducing acidity.

EM devices include transformers, electric relays, radio/TV, telephones, electric motors, transmission lines, waveguides, antennas, optical fibers, radars, and lasers. The design of these devices requires thorough knowledge of the laws and principles of EM.

[^2]
†1.2 A PREVIEW OF THE BOOK

The subject of electromagnetic phenomena in this book can be summarized in Maxwell's equations:

$$
\begin{align*}
\nabla \cdot \mathbf{D} & =\rho_{v} \tag{1.1}\\
\nabla \cdot \mathbf{B} & =0 \tag{1.2}\\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \tag{1.3}\\
\nabla \times \mathbf{H} & =\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t} \tag{1.4}
\end{align*}
$$

where $\nabla=$ the vector differential operator
D = the electric flux density
B = the magnetic flux density
$\mathrm{E}=$ the electric field intensity
$\mathbf{H}=$ the magnetic field intensity
$\rho_{v}=$ the volume charge density
$\mathbf{J}=$ the current density
Maxwell based these equations on previously known results, both experimental and theoretical. A quick look at these equations shows that we shall be dealing with vector quantities. It is consequently logical that we spend some time in Part 1 examining the mathematical tools required for this course. The derivation of eqs. (1.1) to (1.4) for time-invariant conditions and the physical significance of the quantities $\mathbf{D}, \mathbf{B}, \mathbf{E}, \mathbf{H}, \mathbf{J}$, and ρ_{v} will be our aim in Parts 2 and 3. In Part 4, we shall reexamine the equations for time-varying situations and apply them in our study of practical EM devices such as transmission lines, waveguides, antennas, fiber optics, and radar systems.

1.3 SCALARS AND VECTORS

Vector analysis is a mathematical tool with which electromagnetic concepts are most conveniently expressed and best comprehended. We must learn its rules and techniques before we can confidently apply it. Since most students taking this course have little exposure to vector analysis, considerable attention is given to it in this and the next two chapters. ${ }^{3}$ This chapter introduces the basic concepts of vector algebra in Cartesian coordinates only. The next chapter builds on this and extends to other coordinate systems.

A quantity can be either a scalar or a vector. A scalar is a quantity that is completely specified by its magnitude.

[^3]A scalar is a quantity that has only magnitude.
Quantities such as time, mass, distance, temperature, entropy, electric potential, and population are scalars. A vector has not only magnitude, but direction in space.

A vector is a quantity that is described by both magnitude and direction.
Vector quantities include velocity, force, momentum, acceleration displacement, and electric field intensity. Another class of physical quantities is called tensors, of which scalars and vectors are special cases. For most of the time, we shall be concerned with scalars and vectors. ${ }^{4}$

To distinguish between a scalar and a vector it is customary to represent a vector by a letter with an arrow on top of it, such as $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, or by a letter in boldface type such as A and B. A scalar is represented simply by a letter-for example, A, B, U, and V.

EM theory is essentially a study of some particular fields.

A field is a function that specifies a particular quantity everywhere in a region.
A field may indicate variation of a quantity throughout space and perhaps with time. If the quantity is scalar (or vector), the field is said to be a scalar (or vector) field. Examples of scalar fields are temperature distribution in a building, sound intensity in a theater, electric potential in a region, and refractive index of a stratified medium. The gravitational force on a body in space and the velocity of raindrops in the atmosphere are examples of vector fields.

1.4 UNIT VECTOR

A vector \mathbf{A} has both magnitude and direction. The magnitude of \mathbf{A} is a scalar written as A or $|\mathbf{A}|$. A unit vector \mathbf{a}_{A} along \mathbf{A} is defined as a vector whose magnitude is unity (i.e., 1) and its direction is along \mathbf{A}; that is,

$$
\begin{equation*}
\mathbf{a}_{A}=\frac{\mathbf{A}}{|\mathbf{A}|}=\frac{\mathbf{A}}{A} \tag{1.5}
\end{equation*}
$$

Note that $\left|\mathbf{a}_{A}\right|=1$. Thus we may write \mathbf{A} as

$$
\begin{equation*}
\mathbf{A}=A \mathbf{a}_{A} \tag{1.6}
\end{equation*}
$$

which completely specifies \mathbf{A} in terms of its magnitude A and its direction \mathbf{a}_{A}.
A vector A in Cartesian (or rectangular) coordinates may be represented as

$$
\begin{equation*}
\left(A_{x}, A_{y}, A_{z}\right) \quad \text { or } \quad A_{x} \mathbf{a}_{x}+A_{y} \mathbf{a}_{y}+A_{z} \mathbf{a}_{z} \tag{1.7}
\end{equation*}
$$

[^4]

FIGURE 1.1 (a) Unit vectors $\mathbf{a}_{x}, \mathbf{a}_{y}$, and \mathbf{a}_{z}, (b) components of \mathbf{A} along $\mathbf{a}_{x}, \mathbf{a}_{y}$, and \mathbf{a}_{z}.
where A_{x}, A_{y}, and A_{z} are called the components of \mathbf{A} in the x-, y-, and z-directions, respectively; $\mathbf{a}_{x}, \mathbf{a}_{y}$, and \mathbf{a}_{z} are unit vectors in the x-, y-, and z-directions, respectively. For example, \mathbf{a}_{x} is a dimensionless vector of magnitude one in the direction of the increase of the x-axis. The unit vectors $\mathbf{a}_{x}, \mathbf{a}_{y}$, and \mathbf{a}_{z} are illustrated in Figure 1.1(a), and the components of A along the coordinate axes are shown in Figure 1.1(b). The magnitude of vector \mathbf{A} is given by

$$
\begin{equation*}
A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}} \tag{1.8}
\end{equation*}
$$

and the unit vector along \mathbf{A} is given by

$$
\begin{equation*}
\mathbf{a}_{A}=\frac{A_{x} \mathbf{a}_{x}+A_{y} \mathbf{a}_{y}+A_{z} \mathbf{a}_{z}}{\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}} \tag{1.9}
\end{equation*}
$$

1.5 VECTOR ADDITION AND SUBTRACTION

Two vectors \mathbf{A} and \mathbf{B} can be added together to give another vector \mathbf{C}; that is,

$$
\begin{equation*}
\mathbf{C}=\mathbf{A}+\mathbf{B} \tag{1.10}
\end{equation*}
$$

The vector addition is carried out component by component. Thus, if $\mathbf{A}=\left(A_{x}, A_{y}, A_{z}\right)$ and $\mathbf{B}=\left(B_{x}, B_{y}, B_{z}\right)$.

$$
\begin{equation*}
\mathbf{C}=\left(A_{x}+B_{x}\right) \mathbf{a}_{x}+\left(A_{y}+B_{y}\right) \mathbf{a}_{y}+\left(A_{z}+B_{z}\right) \mathbf{a}_{z} \tag{1.11}
\end{equation*}
$$

Vector subtraction is similarly carried out as

$$
\begin{align*}
\mathbf{D} & =\mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B}) \\
& =\left(A_{x}-B_{x}\right) \mathbf{a}_{x}+\left(A_{y}-B_{y}\right) \mathbf{a}_{y}+\left(A_{z}-B_{z}\right) \mathbf{a}_{z} \tag{1.12}
\end{align*}
$$

(a)

(b)

FIGURE 1.2 Vector addition $\mathbf{C}=\mathbf{A}+\mathbf{B}$: (a) parallelogram rule, (b) head-to-tail rule.

(a)

(b)

FIGURE 1.3 Vector subtraction $\mathbf{D}=\mathbf{A}-\mathbf{B}$: (a) parallelogram rule, (b) head-to-tail rule.

Graphically, vector addition and subtraction are obtained by either the parallelogram rule or the head-to-tail rule as portrayed in Figures 1.2 and 1.3, respectively.

The three basic laws of algebra obeyed by any given vectors \mathbf{A}, \mathbf{B}, and \mathbf{C} are summarized as follows:

Law	Addition	Multiplication
Commutative	$\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$	$k \mathbf{A}=\mathbf{A} k$
Associative	$\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}$	$k(\ell \mathbf{A})=(k \ell) \mathbf{A}$
Distributive	$k(\mathbf{A}+\mathbf{B})=k \mathbf{A}+k \mathbf{B}$	

where k and ℓ are scalars. Multiplication of a vector with another vector will be discussed in Section 1.7.

1.6 POSITION AND DISTANCE VECTORS

A point P in Cartesian coordinates may be represented by (x, y, z).

The position vector \mathbf{r}_{P} (or radius vector) of point P is defined as the directed distance from the origin O to P; that is,

$$
\begin{equation*}
\mathbf{r}_{P}=O P=x \mathbf{a}_{x}+y \mathbf{a}_{y}+z \mathbf{a}_{z} \tag{1.13}
\end{equation*}
$$

FIGURE 1.4 Illustration of position vector $\mathbf{r}_{P}=3 \mathbf{a}_{x}+4 \mathbf{a}_{y}=5 \mathbf{a}_{z}$.

FIGURE 1.5 Distance vector $\mathbf{r}_{P Q}$.

The position vector of point P is useful in defining its position in space. Point (3, 4, 5), for example, and its position vector $3 \mathbf{a}_{x}+4 \mathbf{a}_{y}+5 \mathbf{a}_{z}$ are shown in Figure 1.4.

The distance vector is the displacement from one point to another.
If two points P and Q are given by $\left(x_{P}, y_{P}, z_{P}\right)$ and $\left(x_{Q}, y_{Q}, z_{Q}\right)$, the distance vector (or separation vector) is the displacement from P to Q as shown in Figure 1.5; that is,

$$
\begin{align*}
\mathbf{r}_{P Q} & =\mathbf{r}_{Q}-\mathbf{r}_{P} \\
& =\left(x_{Q}-x_{P}\right) \mathbf{a}_{x}+\left(y_{Q}-y_{P}\right) \mathbf{a}_{y}+\left(z_{Q}-z_{P}\right) \mathbf{a}_{z} \tag{1.14}
\end{align*}
$$

The difference between a point P and a vector A should be noted. Though both P and \mathbf{A} may be represented in the same manner as (x, y, z) and $\left(A_{x}, A_{y}, A_{z}\right)$, respectively, the point P is not a vector; only its position vector \mathbf{r}_{P} is a vector. Vector A may depend on point P, however. For example, if $\mathbf{A}=2 x y \mathbf{a}_{x}+y^{2} \mathbf{a}_{y}-x z^{2} \mathbf{a}_{z}$ and P is $(2,-1,4)$, then \mathbf{A} at P would be $-4 \mathbf{a}_{x}+\mathbf{a}_{y}-32 \mathbf{a}_{z}$. A vector field is said to be constant or uniform if it does not depend on space variables x, y, and z. For example, vector $\mathbf{B}=3 \mathbf{a}_{x}-2 \mathbf{a}_{y}+10 \mathbf{a}_{z}$ is a uniform vector while vector $\mathbf{A}=2 x y \mathbf{a}_{x}+y^{2} \mathbf{a}_{y}-x z^{2} \mathbf{a}_{z}$ is not uniform because \mathbf{B} is the same everywhere, whereas \mathbf{A} varies from point to point.

If $\mathbf{A}=10 \mathbf{a}_{x}-4 \mathbf{a}_{y}+6 \mathbf{a}_{z}$ and $\mathbf{B}=2 \mathbf{a}_{x}+\mathbf{a}_{y}$, find (a) the component of \mathbf{A} along \mathbf{a}_{y}, (b) the magnitude of $3 \mathbf{A}-\mathbf{B}$, (c) a unit vector along $\mathbf{A}+2 \mathbf{B}$.

Solution:

(a) The component of \mathbf{A} along \mathbf{a}_{y} is $A_{y}=-4$.
(b) $3 \mathbf{A}-\mathbf{B}=3(10,-4,6)-(2,1,0)$

$$
\begin{aligned}
& =(30,-12,18)-(2,1,0) \\
& =(28,-13,18)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
|3 \mathbf{A}-\mathbf{B}| & =\sqrt{28^{2}+(-13)^{2}+(18)^{2}}=\sqrt{1277} \\
& =35.74
\end{aligned}
$$

(c) Let $\mathbf{C}=\mathbf{A}+2 \mathbf{B}=(10,-4,6)+(4,2,0)=(14,-2,6)$.

A unit vector along \mathbf{C} is

$$
\mathbf{a}_{c}=\frac{\mathbf{C}}{|\mathbf{C}|}=\frac{(14,-2,6)}{\sqrt{14^{2}+(-2)^{2}+6^{2}}}
$$

or

$$
\mathbf{a}_{c}=0.9113 \mathbf{a}_{x}-0.1302 \mathbf{a}_{y}+0.3906 \mathbf{a}_{z}
$$

Note that $\left|\mathbf{a}_{c}\right|=1$ as expected.

PRACTICE EXERCISE 1.1

Given vectors $\mathbf{A}=\mathbf{a}_{x}+3 \mathbf{a}_{z}$ and $\mathbf{B}=5 \mathbf{a}_{x}+2 \mathbf{a}_{y}-6 \mathbf{a}_{z}$, determine
(a) $|\mathbf{A}+\mathbf{B}|$
(b) $5 \mathrm{~A}-\mathrm{B}$
(c) The component of \mathbf{A} along \mathbf{a}_{y}
(d) A unit vector parallel to $3 \mathbf{A}+\mathbf{B}$

Answer: (a) 7 , (b) $(0,-2,21)$, (c) 0 , (d) $\pm(0.9117,0.2279,0.3419)$.
(a) The position of vector \mathbf{r}_{P}
(b) The distance vector from P to Q
(c) The distance between P and Q
(d) A vector parallel to $P Q$ with magnitude of 10

[^0]: * Values recommended by CODATA (Committee on Data for Science and Technology, Paris).

[^1]: ${ }^{\dagger}$ Indicates sections that may be skipped, explained briefly, or assigned as homework if the text is covered in one semester.

[^2]: ${ }^{1}$ For numerous applications of electrostatics, see J. M. Crowley, Fundamentals of Applied Electrostatics. New York: John Wiley \& Sons, 1986.
 ${ }^{2}$ For other areas of applications of EM, see, for example, D. Teplitz, ed., Electromagnetism: Paths to Research. New York: Plenum Press, 1982.

[^3]: ${ }^{\dagger}$ Indicates sections that may be skipped, explained briefly, or assigned as homework if the text is covered in one semester.
 ${ }^{3}$ The reader who feels no need for review of vector algebra can skip to the next chapter.

[^4]: ${ }^{4}$ For an elementary treatment of tensors, see, for example, A. I. Borisenko and I. E. Tarapor, Vector and Tensor Analysis with Applications. New York: Dover, 1979.

